

Exercise 1

(10 points)

Let A, B, and C be sets. Show that

a) $(A \cap B) \subseteq (A \cup B \cup C)$.

 $\{x | x \in (A \cap B)\} (Assumption)$ $=> \{x | x \in A \land x \in B\} (Definition of intersection)$ $=> \{x | x \in A \lor x \in B\}$ $=> \{x | x \in A \lor x \in B \lor x \in C\}$ $=> \{x | x \in (A \cup B \cup C)\}$

b) $(A \cap B \cap C) \subseteq (A \cap B)$.

 $\{x | x \in (A \cap B \cap C)\} (Assumption)$ => $\{x | x \in A \land x \in B \land x \in C\}$ (Definition of intersection) => $\{x | x \in A \land x \in B\}$ (Simplification) => $\{x | x \in (A \cap B)\}$

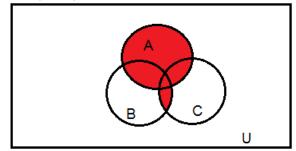
c) $(A-B)-C \subseteq A-C$.

 $\{x | x \in (A - B) - C\} (Assumption)$ => $\{x | x \in A \land x \notin B \land x \notin C\}$ (Definition of difference) => $\{x | x \in A \land x \notin C\}$ (Simplification) => $\{x | x \in (A - C)\}$

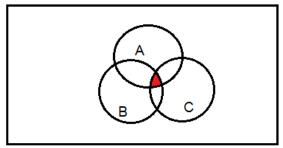
- d) $(A\cap C)\cap(B-C) = \emptyset$.
 - $(A \cap C) \cap (B C) = (A \cap C) \cap (B \cap \overline{C}) = (A \cap B) \cap (C \cap \overline{C})$ = $(A \cap B) \cap \phi(Complement \ law)$ = $\phi(Domination \ law)$

Draw the Venn diagrams for each of these combinations of the sets A, B, and C.

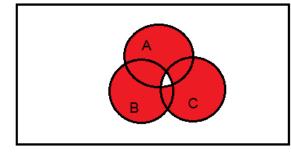
a) $A \cup (B \cap C)$



b) $A \cap B \cap C$



c) $(A-B)\cup(B-C)\cup(C-A)$



Exercise 3

(10 points)

Can you conclude that A = B if A, B, and C are sets such that

- a) AUC = BUC? No, Counter example: Let A={1,2,3,4,5}, B={1,2,3,4}, C={5} AUC = {1,2,3,4,5} BUC = {1,2,3,4,5} We get, AUC=BUC but A does not equal B.
- b) $A \cap C = B \cap C$? No, Counter example: Let $A = \{1,2,3\}$ $B = \{1,2\}$ $C = \{1\}$ $A \cap C = \{1\} = B \cap C$ but A does not equal B.
- c) $A \cup C = B \cup C$ and $A \cap C = B \cap C$?
- a. Yes,

Suppose, $x \in A$: If $x \in C$, $x \in A \cap C \Rightarrow x \in B \cap C \Rightarrow x \in B$ If $x \notin C$, $x \in A \cup C \Rightarrow x \in B \cup C \Rightarrow x \in B$ $\Rightarrow A \subseteq B$

- ⇒ Then, do the same starting form $\mathbf{x} \in \mathbf{B}$ until you get $\mathbf{B} \subseteq \mathbf{A}$ Therefore, \mathbf{A} =B.
- d) A-C = B-C and C-A = B-A ? No, Let A= {1,2,3}, B={1,4,3,6}, C={2,4,6} A-C=B-C= {1,3} C-A={4,6}= B-A But A and B are not equal.

Exercise 4

(10 points)

Find the domain and range of these functions. Note that in each case in order to find the domain, determine the set of elements assigned values by the function.

- a) The function that assigns the next smallest integer to a negative integer Domain: Z⁻ Range= Z-{-1}
- b) The function that assigns to each nonnegative integer its first digit Domain= N Range={0,1,2,3,4,5,6,7,8,9}
- c) The function that assigns to a bit string the number of bits in the string Domain: set of binary strings Range= N
- d) The function that assigns to a bit string the number of zero bits in the string Domain: set of binary strings Range= N

Exercise 5

(10 points)

Give an example of a function from N to N that is

- a) one-to-one but not onto. F(n)=n+2 is one-to-one but not onto since 0 and 1 have no pre-images in \mathbb{N} .
- **b)** onto but not one-to-one. F(n)=|n/3| is onto but not one-to-one since f(0)=f(1)=f(2).
- c) both onto and one-to-one (but different from the identity function). $F(n) = \begin{cases} n+1 & \text{if } n \text{ is even} \\ n-1 & \text{if } n \text{ is odd} \end{cases}$
- d) neither one-to-one nor onto.F(n)=n! since prime numbers cannot have a pre-image and since f(0)=f(1)=1.

Exercise 6

<u>(10 points)</u>

Determine whether each of these functions is a bijection from **R** to **R**.

- a) $f(x)=((5x-3)^2-(3x-5)^2)/(4x+4)$ Not a bijection, since there is the condition $x \neq -1$
- b) f(x)=(x+3)/(x+4)Not a bijection, since there is the condition $x \neq -4$
- c) $f(x) = -4x^2 + 5$ Not a bijection since neither one-to-one nor onto
- **d)** $f(x)=x^7+3$ Bijection

Exercise 7

(10 points)

Let $f(x) = ax^2 + bx + c$ and $g(x) = dx^2 + ex + f$, where a, b, c, d, e and f are constants. Determine necessary and sufficient conditions on the constants a, b, c, d, e and f so that f $\circ g = g \circ f$.

 $f \circ g(x) = f(g(x)) = a(cx+d)+b = acx+ad+b$ $g \circ f(x) = g(f(x)) = c(ax+b)+d = acx+bc+d$ $Then, f \circ g(x) = g \circ f(x) if ad+b = bc+d...$

Exercise 8

(10 points)

Let f be a function from A to B. Let R and S be subsets of B. Show that

a) $f^{-1}(S \cup R) = f^{-1}(S) \cup f^{-1}(R).$ Assume $x \in f^{-1}(S) \cup f^{-1}(R)$ then $f(x) \in S$ or $f(x) \in R$. $\Rightarrow f(x) \in (SUR)$ $\Rightarrow x \in F^{-1}(SUR)$ $\Rightarrow f^{-1}(S) \cup f^{-1}(R) \subseteq F^{-1}(SUR)$

now, assume x \in F⁻¹(SUR) ,then f(x) \in (SUR)

- $\Rightarrow f(x) \in S \text{ or } f(x) \in \mathbb{R}$
- \Rightarrow x \in f⁻¹(S)Uf⁻¹(R)
- $\Rightarrow F^{-1}(SUR) \subseteq f^{-1}(S)Uf^{-1}(R)$

Therefore, $F^{-1}(SUR) = f^{-1}(S)Uf^{-1}(R)$

b) $f^{-1}(R \cap S) = f^{-1}(S) \cap f^{-1}(R)$. Assume $\in f^{-1}(S) \cap f^{-1}(R)$, then $f(x) \in S$ and $f(x) \in R$ $\Rightarrow f(x) \in (S \cap R)x$ $\Rightarrow \in f^{-1}(S \cap R)$ $\Rightarrow f^{-1}(S) \cap f^{-1}(R) \subseteq f^{-1}(S \cap R)$

Let Suppose $x \in f^{-1}(S \cap R)$, then then $f(x) \in S \cap R$ $\Rightarrow f(x) \in S \cap R$ $\Rightarrow f(x) \in S$ and $f(x) \in R$ $\Rightarrow x \in f^{-1}(S)$ and $x \in f^{-1}(R)$ $\Rightarrow x \in f^{-1}(S) \cap f^{-1}(R)$ $\Rightarrow f^{-1}(S \cap R) \subseteq f^{-1}(S) \cap f^{-1}(R)$

Therefore, $f^{-1}(S \cap R) = f^{-1}(S) \cap f^{-1}(R)$

Exercise 9

(10 points)

Show that if x is a real number and m is an integer, then [x + m] = [x] + m.

Let $n = \lfloor x \rfloor$, where $n \le x < n + 1$ $\Rightarrow +m \le x + m < n + m + 1$ $\Rightarrow |x + m| = n + m = |x| + m$

Exercise 10

(10 points)

Prove or disprove each of these statements about the floor and ceiling functions.

a) [[x]]=[x] for all real numbers x. True Proof: Let n=[x], where n ≤ x < n + 1 such than n∈ N Then [[x]]=[n]=n

- b) [x+y]=[x]+[y] for all real numbers x and y. False Counter example: Let x=0.5 and y=1.5 [x+y]= [0.5+1.5]= [2]=2 [x]= [0.5]=1 [y]= [1.5]=2 [x]+[y]=3 which is not equal to [x+y]
- c) $\lceil \lfloor x/3 \rfloor / 2 \rceil = \lfloor x/6 \rceil$ all real numbers x.
- a. [[x/3]/2]=[x/6]True Proof: Let x = 6n+k such that n is an integer and $0 \le k < 6$

If k=0:

We have x=6n

 \Rightarrow [[x/3]/2]= n= [x/6]

If 0<k≤3:

[x/3]=[(6n+k)/3]=[2n+k/3]=2n+1 (since 0 <k/3 \leq 1 and 2n is an integer) [[x/3]/2]=[(2n+1)/2]=[n+1/2]=n+1=[x/6]

If 3<k<6:

[x/3]= **2n+2**

[[x/3]/2]=n+1=[x/6]

d) $\lfloor \sqrt{\lceil x \rceil} \rfloor = \lfloor \sqrt{x} \rfloor$ for all positive real numbers x. False Counter example: Let X=3.1 $\lfloor \sqrt{\lceil x \rceil} \rfloor = \lfloor \sqrt{4} \rfloor = 2$ $\lfloor \sqrt{x} \rfloor = \lfloor \sqrt{3}.1 \rfloor = \lfloor 1.76 \rfloor = 1$ They are not equal

f) $[x]+[y]+[x+2y] \le [2x]+[3y]$ for all real numbers x and y.

```
False
Counter example:
Let x=2.1
Y=1.1
\Rightarrow [x]+[y]+[x+2y]=[2.1]+[1.1]+[2.1+2*1.1]=3+2+[4.3]=3+2+5=10
And [2x]+[3y]=[2*2.1]+[3*1.1]=[4.2]+[3.3]=5+4=9 < [x]+[y]+[x+2y]
```